Comparing Open Source Search Engine Functionality, Efficiency and Effectiveness with Respect to Digital Forensic Search

Joachim Hansen, Kyle Porter, Andrii Shalaginov, and Katrin Franke

NTNU Digital Forensics Group
Department of Information Security and Communication Technology
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology
joachim90jh@gmail.com,{kyle.porter,andrii.shalaginov,katrin.franke}@ntnu.no

Abstract

Keyword search is one of the key components of the Cyber Crime Investigations. It has a direct influence on precision and relevance of the data found on seized data carriers. However, many of the digital forensics tools developers do not reveal the actual underlying algorithms or source code of their search engines. Therefore, there is a challenge to verify their accuracy and efficiency. On the other hand, open-source search engines are an alternative to using proprietary keyword search tools, where they have extensive functionality and perform well on large-scale datasets. The goal of this paper is to explore the applicability of such search engines in forensics search. The contribution of the paper is two-folded. First, a thorough literature review and comparison of the supported functionality documented by open-source search engines and open-source digital forensic tools was performed. In addition, a survey of existing publicly-available digital forensics datasets was conducted. Second, out of reviewed search engines, Solr and Elasticsearch were selected and compared by their functionality, efficiency in searching and indexing, and effectiveness of search results with respect to digital forensic search using relevant datasets. Our findings should assist those in the digital forensic community when choosing the appropriate open source search engines for keyword search in large-scale datasets.

1 Introduction

The current Big Data digital landscape has provided digital forensic investigations with massive amounts of structured and unstructured data to analyze and search for relevant evidence, and the quantity of data to analyze only continues to grow [32]. Such circumstances lead to important considerations such as how forensic practitioners should search through their collected data for investigations in a reasonable amount of time. Another challenge is how to best handle the storage requirements of the data. The use of relational databases to process the data has been already found to be inappropriate for digital investigations years ago. The reason for this is that the majority of the data retrieved is unstructured (for example, human written text) and, therefore, require other approaches that relational storage [31].

Information retrieval systems, such as search engines, are often used to help locate enterprise data where these enterprises oftentimes have to manage large volumes of heterogeneous data structures and formats [15]. For the digital forensic practitioner, the processing of the data must be reliable, forensically sound, and ideally the search engines and forensic tools supporting these ends should utilize algorithms with low memory and time complexities. On the other hand, we

*The author presented this paper at the NISK 2018 conference.
have to take into consideration so-called Forensic Search that may put specific restrictions of the keyword search process. These include lack of standardized approach to data preprocessing and formatting (for subsequent search needs), and the heterogeneous nature of the data (varied file types). In addition, the digital forensics practitioner may experience new data formats that also put demand on quality of the search results, which additionally have to follow Digital Forensics Process guidelines.

The problem with proprietary digital forensic tools is that developers do not reveal the underlying algorithms or source code. Therefore, we examine open-source search engines as an alternative method to using proprietary keyword search tools, where they have extensive functionality and perform well on large-scale datasets. There is a little chance to perform equivalent analysis of proprietary software due to license and source code availability limitations. In particular, the goal of this paper is to evaluate the performance of selected open source search engines and search functionality on forensic data.

Our first contribution is the comparison of the supported functionality documented by open-source search engines and open-source tools. The different search features of several popular open-source search engines and forensic tools are accounted for in an easy to read checklist. Additionally, we conducted a survey on existing publicly-available digital forensic datasets, six of which were used for testing. Our second contribution is an experimental comparison of Solr and Elasticsearch. This benchmark experiment tests how well they perform at indexing, searching and memory consumption during searching. Our results indicate Elasticsearch was generally better then Solr at index creation time, minimizing index size and response time for the first run of search terms. Solr outperformed Elasticsearch on second run of search terms. The difference between the search engines with respect to memory performance during searching was negligible. Information regarding which open-source search engines are available, their search features, and their searching and indexing capabilities is valuable for forensic practitioners when choosing to utilize an open source-search engine for performing keyword search in large-scale datasets.

The paper has the following structure. Section 2 presents the documented functionality of open-source search engines and existing publicly available forensic-related datasets. Experiment approach motivation, data selection and computing environment are given in the Section 3. Analysis of efficiency and effectiveness of the selected open-source search engines on given digital forensics data follow in the Section 4. Finally, Section 5 discusses implications of the study and concludes the paper.

2 Open Source Digital Forensic Tools, Search Engines, and Datasets

In this section we describe the results of a survey of the search functionality of open-source search engines and open-source forensics tools. In addition, an overview of the publicly-available digital forensics-related datasets is given.

2.1 Functionality of Open Source Digital Forensic Tools and Search Engines

Our choices of open source search engines to analyze was based on popularity of use (Google Trends) and mentions within the scientific literature. To narrow down our selection of open source forensic tools and search engines we selected them based on their degree of documentation and tool category. The inspection process was performed as a combination of targeted manual
inspection, keyword searching of technical documentation and source code comments of the software being inspected. By targeted manual inspection, we mean looking at portions of the documentation more likely to include relevant information. Some documentation pages might be very old or indicate that the documented feature is experimental, and as such were excluded from our review. One issue with the inspection process is that inferences often had to be made on out of context images and text that describes the search capabilities. Moreover, the description was often quite short. Ideally, the software capabilities would be confirmed by practical tests, but perhaps this can be done as future work. Ultimately, Sleuth Kit - Autopsy, Volatility, Mozilla InvestiGator, and Hachoir were the forensic tools selected based on their degree of documentation and catalogue of tools. Elasticsearch, Solr, and Sphinx were the search engines selected based on popularity. Table 1 shows a summary of the open source forensic tool and search engine functionality analysis. A checkmark indicates that the given program has the capability and an empty cell means that it does not. This Table is a result of extensive literature review aimed at understanding of all possible search functionalities existing in digital forensics tools.

While we do not define every capability of each forensic tool and search engine, we do go over the one we utilized for our experiments. Full text search is suitable for finding relevant documents in a large set of unstructured data [14, 16]. A document in full text search is considered a list of searchable terms (e.g. words and numbers) [16]. The terms are usually indexed in order to have faster subsequent searches.

2.2 Publicly available digital forensics-related databases

To support this study, an overview of the publicly-available datasets related to digital forensic was performed. In contrast to the overview of all possible Digital Forensics datasets performed in 2017 [9], this work focuses only on publicly-available, which means that anybody can fetch them and repeat the experiments. It is important to understand that there is no way of getting real-world data from crime investigation, however, there are plenty of datasets created by researchers for data analysis purposes. The systematic literature review included following the iterations:

1. Search digital libraries, scan scientific articles for names, direct links or sources related to the datasets below, and use this information on the Google search engine to identify individual datasets or repositories of datasets.
2. Document search phrases that resulted in identifying new datasets.
3. Repeat step 1 and 2 with other resources like github, Kaggle and figshare to locate more datasets.

Table 2 is a summary of review process to identify datasets candidates to be part of the experiment set in the next section. We identified 83 datasets that are publicly available and attributed to Digital Forensic. This number excludes biometric datasets such as images of fingerprints, hand signature, gait, voice recognition and iris. However, the review will include authorship attribution corpus. To our knowledge, there has not been performed any comprehensive enumeration of forensics-related datasets.
Table 1: Comparison of search capabilities and functionality

<table>
<thead>
<tr>
<th>Capability</th>
<th>Sleuthkit</th>
<th>Volatility</th>
<th>Mozilla Invest-Gator</th>
<th>Hachoir</th>
<th>Elasticsearch</th>
<th>Solr</th>
<th>Sphinx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular expression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Decide/Insensitive case</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Concurrent search</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Automate search, with respect to keywordlist</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import keywords</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export keywords</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodical search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substring matching</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Export search results</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Match highlighting</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UTF-8 Encoding support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UTF-16 Encoding support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO-8859-1 Encoding support</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deduplication support</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machines based matching</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orphan/deleted file search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM search</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching memory structures (pre-made)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash database lookup</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Binary search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTML renderer for search results</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for masking sensitive fields</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact hash matching</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System provided keyword suggestions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND, OR, NOT, GROUP boolean operators</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ boolean operator (term must exist)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File search filter</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieval of documents not matching filters</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set max search hits</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stripping sensitive metadata</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase search priority of important indexes</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminate search after a given elapsed time</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorting search results</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customized message/ post-search action</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregated summary of search results</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narrow search results with post filter</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set relevancy weight for field</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoreLikeThisQuery</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search result clustering</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum matching criteria</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed relevancy score</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field collapsing</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for TF-IDF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language detection on index time</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuzzy matching</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faceted search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonetic search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geospatial search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamed search</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Experiment Methodology

The focus of practical evaluation in this study is to provide understanding of how well the open-source search engines perform on digital forensics-related data and whether their effectiveness can be considered acceptable for criminal investigations.

3.1 Experimental Approach

To measure the difference in effectiveness and efficiency for both search engines, the following experiments were conducted:

- Experiments with fulltext searching
- Experiments performed on a set of search engines (Solr and Elasticsearch).
- Set of keywords based on domain knowledge of datasets and a search for strings that are not present in the dataset.
- Searching within an index (i.e. not searching across all indexes or multiple indexes at the same time).
- Search time
- Cache temperature
- Memory measurement during search
- Search Accuracy - count of clear cut misses
- Out of box configurations (default values)

There are two main limitations of the experiment. The first being that the experiments are performed on only one virtual machine. This environment does not allow testing for how well the search engines perform at distributed search. The second issue is that only the default configurations was tested (out-of-the-box setup) with Solr [11] and Elasticsearch [7].

3.2 Data selection

When working with and evaluating digital forensics tools it is difficult to obtain a real-world dataset due to sensitivity of the information, which might be related to criminal cases. Addition-
ally, digital forensics experts may experience a variety of data formats, even when considering primarily text datasets. One of the criteria was also to look for large-scale datasets to have a better performance testing, therefore, the datasets were selected based on dataset size and forensic category. The list is shown below.

1. **Fraud**: Enron email dataset [4].
2. **Network**: Snort IDS log file [26].
3. **Email**: Hillary Clinton emails [13].
4. **Malware**: VirusTotal and PE32 reports [21].
5. **Spam**: DITSSC [3].
6. **SMS**: NUSSC [5].

3.3 Dataset Pre-processing, Indexing and Search Queries

A short description of the experimental design including the preprocessing, indexing and searching steps in the experiment are given here. As shown in Figure 1, the first step is running the datasets through a general preprocessing step.

![Figure 1: Flowchart experimental design](image)

The data pre-processings step includes following sub-steps:

- Remove *JSON* structure, *XML* structure and/or dataset specific structure from all the datasets.
- Removes characters that cannot be processed by the *JSON* parser in *Solr* or *Elasticsearch*.
- Removes junk (e.g. terms that is not interesting, such as many repeated characters)
- Removes unnecessary whitespace
- Removes empty lines
- Separate dataset entries on their own lines.
- Split the dataset into bulk files of 1000 lines each (each line is considered as a document for importing).

Then after general pre-processing the dataset, bulk files have to go through another two preprocessing steps, one for *Elasticsearch* and one for *Solr* as shown in the Figure 2a and Figure 2b respectively.

A single content field entry is 1 *JSON* document to be indexed. We call the output from these steps bulk *Elastic* and bulk *Solr* respectively. The next 2 steps are *Elastic* and *Solr* specific bulk indexers. These indexers take the *Elastic* and *Solr* bulk files as input and indexes all the bulk files/the entire dataset. During these steps, the following measurements are taken:
The Linux command `time` is used to capture total elapsed time of indexer.

- **QTime** in Solr and `took` in Elasticsearch are used as response time.
- A size command in Elasticsearch are used to get the size of the index. Additionally, the filesystem in our environment is inspected to find the index size in Solr.

The last two steps are searching with Solr and Elasticsearch. The Solr(OR)/Elastic(OR) and Solr(AND+)/Elastic(AND+) are similar. The (OR) search queries are using the Boolean OR operator between multiple search terms. The (AND+) search queries requires that all search terms in the search string are present in the matching string, and that the terms are in the right order for them being a match. At these steps, the following measurements are taken: Clear cut misses, Memory stats are captured with the Linux `top` command, QTime and `took` response time.

3.4 Computing Environment

To perform benchmarking of effectiveness and efficiency of the selected search engines, the following setup was used: Virtual Machine (6 cores, 40GB RAM and 2TB storage) with Ubuntu 16.04.3 LTS, Openjdk 1.8.0_131, Elasticsearch 6.0.1 and Solr 7.1.0 and Solr Cloud.

4 Results & Analysis

This section is devoted to quantitative comparison of the efficiency in indexing and searching of Solr and Elasticsearch with subsequent analysis of the obtained results.

4.1 Indexer performance

The benchmark of the indexer considers the change in size starting from the collection of documents to be indexed to the resulting index size, as well as the real time, response time and delta (difference between the times) when measuring index creation time. Real time (in milliseconds) is the total elapsed time by the indexer process measured by the Linux `time` command. Response time is the time it takes from the indexer getting the index request until completion of the indexer, given in milliseconds by QTime (Solr) and `took` (Elasticsearch). Delta is the the remaining time when subtracting the response time from real time (i.e. delta = real time - response time). We measure for delta since the response time and real time may not be the same. This is because the real time includes I/O overhead (request creation, context switching, writing to console, etc.). For each benchmark test we run the indexer twice on each data set, denoted first run and second run respectively. The Figure 3 shows the percentage size change from “to be indexed” data-set to “indexed data-set” for Solr and Elasticsearch.

Figure 4 shows a comparison of the response time for Solr and Elasticsearch indexer for each individual dataset. In Figure 6 shows the real elapsed time for indexing and how much time was spent on I/O for Solr and Elasticsearch.
Figure 3: The change in index size

Figure 4: Index time Took and QTime
From our indexing experiments, we find that Elasticsearch is generally much faster than Solr at indexing (index response time) for both the first and second runs with the exception of the DITSSC SPAM dataset (as seen in Figure 4). Furthermore, we can see that the index response time is not static from the first run to the second. So there is no consistent reduction in response time from run 1 to run 2. From Figure 6 we see that the real time and response time are proportionally closer in Solr than in Elasticsearch. Therefore, more time is spent on delta in Elasticsearch than Solr.

Figure 5: One iteration of the indexer

Figure 6: Index real time and delta

Figure 5 shows a single iteration of the Solr or Elasticsearch indexer. The indexer would run $i=(\text{number of bulk files for dataset } d)$ times. The indexer is still working but the actions is not part of the request handler. It is assumed that delta is composed of some actions that is done both before and after the actions of the request handler $[1,8,30]$. The second assumption is that the actions that can be attributed to delta and response time is similar for Elasticsearch and Solr, with some minor exceptions. Possible actions that could contribute to the delta time are reading the bulk Elasticsearch/Solr files to be indexed, transferring with curl, sending request to the request handler, writing to console, etc. Furthermore, the request handler is responsible for creating the index structure, creating ID automatically for the JSON document, commit
(Solr specific command), and writing index to disk.

The two main reasons were identified as to why Elasticsearch uses more time with Delta than Solr. The first is that the JSON bulk index file format in Elasticsearch, with the \{ "index":{} \} lines, resulted in a "Elastic bulk index file" that was about twice as large as in the case of Solr. The second is that it has been observed that Elasticsearch writes far more information to the console than Solr during indexing. We consider the latter to be the highest contributing factor.

Elasticsearch outperformed Solr on index creation time as more emphasis was put on the request handler actions as opposed to I/O. One aspect that influences indexing creation time is the frequency of commits. The commit operation was performed at every iteration of the indexer script and may therefore be partially responsible for slowing down the overall indexing process. While the commit operations are needed in Solr in order to make the documents available for search, the operation is not free [17,30]. It was recommended to limit the frequency of commits to improve indexer performance with respect to index creation time. Another influencing factor is the document size and their line lengths. Large gaps in response time between Solr and Elasticsearch may be seen in Figure 4, but in particular the largest gaps occurred when there are many lines with low character counts (for example the PE32 dataset). So, if Elasticsearch is slightly faster at indexing smaller documents over Solr (where there are many of these smaller documents), then it can explain the gap. Given the big difference in size between the indexes in Solr and Elasticsearch (see Figure 3), the longer index creation time in Solr can partly be explained by having to write more to disk and more processing of the documents to create the index.

Solr cloud has a dependency on a server/program called Apache ZooKeeper and its database [24]. In our experiment where the Zookeeper server and Solr was located on the same virtual machine, it might cause Solr and Zookeeper to fight over I/O resources and therefore trigger a Zookeeper timeout [24]. This could explain the gap in indexing performance.

There is a consideration to be made in Solr, if the segment count is set to a low number, then more merges will occur when indexing, that negatively affects indexing performance [22]. On the upside, queries will be faster as there are fewer places to search. If on the other hand the segment count is high, then we get the opposite situation with improved indexed speed and degraded search performance. A low segment count can be the reason why Solr seems to perform badly with indexing yet be good at searching.

4.2 Search performance

Search performance was evaluated with three different cases on both cold (first run) and warm search phrases (second run). The meaning of “cold” is the use of search phrase for the first time against a given data set, while “warm” infers that the query has been run before. The search cases for evaluation is described below.

1. Single term search (e.g. a word or sequence of symbols)
2. Multiple term search (for AND+ and OR queries)
3. Searching for something that is not present in the dataset (i.e. MD5 hash of the string "Joachim Hansen" = “02edbd94746bc69677e969a89c4eb0d8”).

Figure 7 shows the aggregated search hits and Figure 8 presents the aggregated search time for the three search cases, where the timings and hits for the different dataset experiments were
aggregated with respect to the different search cases.

Figure 7: Aggregated search hits

From Figure 7 we can see that for the majority of the search categories that there is only a small difference between the number of search hits between Solr and Elasticsearch. The exception to this finding is the single term search where Elasticsearch had 7.598% more search hits over Solr. The reasons for this was either that the search queries do not behave the same way, parsing index data was done differently in the search engines, or one search engine parses more information (more exhaustive search) than the other. It was also assumed that OR and AND operators did not affect single terms search. However, this assumption could be incorrect and can be the reason for the large difference between the number of search hits in Solr and Elasticsearch with respect to single term search. Interestingly, both Solr and Elasticsearch has 2 clear cut misses, meaning that no search hits were returned when there is at least one matching occurrence of the search string present in the dataset.

Figure 8: Search time aggregated

Figure 8 shows the aggregated sum of the search time for all datasets categorized by search case. Our experiments show that Elasticsearch is better than Solr for 3 out of the 4 search categories for the first run, but Solr proved to be much better than Elasticsearch for the second run. For instance, Elasticsearch has a 6.980% increase of search time as an aggregate for the second run over Solr. We believe more importance should be placed on the second run, as it is more like a real operating environment with a warm cache.

As mentioned before, a high segment count could negatively affect search performance and that
both \textit{Solr} and \textit{Elasticsearch} emphasize search performance over compression as their default behavior. If multiple shards are present on the same node/host/computer (not distributed) then search performance can be negatively affected according to [12]. This is the case with \textit{Elasticsearch} where 5 shards are on the same host machine. \textit{Elasticsearch} outperforms \textit{Solr} in 4 out of 5 search categories but \textit{Solr} performs better at the second run. We argue that the latter observation was because \textit{Solr} is better (e.g. caching more items or caching the right set of items) at using the cached items from the previous search then \textit{Elasticsearch} [29].

The memory statistics in Table 3 are captured just prior to initiating a search query, during first and second attempt of the same search and the capturing process is ended just seconds after the searches complete. There was in total 84 searches (44 for \textit{Solr} and 44 for \textit{Elasticsearch}) that contribute to the statistics in the table below.

<table>
<thead>
<tr>
<th></th>
<th>\textbf{Elasticsearch}</th>
<th>\textbf{Solr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Virtual memory(VIRT): Size in GiB</td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>42.831</td>
<td>42.831</td>
<td>42.831</td>
</tr>
<tr>
<td>Physical memory (not swappable) - RES:size in GiB</td>
<td>2.807</td>
<td>2,896</td>
</tr>
<tr>
<td>shared memory (SHR): size in GiB (rounded up)</td>
<td>0.34</td>
<td>0.43</td>
</tr>
</tbody>
</table>

While there are differences in memory performance, they are not significant. One question that had arisen is what was considered when the memory was measured. The code should have summed up all threads for the process under question. But what about forking short lived sub processes that are helping with a search task, and furthermore, what part of \textit{Solr} are captured. \textit{Solr} can be divided into \textit{Solr}, \textit{Solr Cloud} and \textit{Zookeeper}. So, which one of these was parts of the memory summary? \textit{Solr} did perform better, but if not all of these processes were taken into account, then the memory performance might not favour \textit{Solr} after all.

5 Discussions & Conclusion

In this work we performed a review of the functionality of popular and well documented open source forensic tools and search engines, conducted a literature review of publicly-available forensic datasets, and then performed a benchmarking experiments. These included memory and time consumption comparison of the indexing and fulltext searching processes of \textit{Elasticsearch} and \textit{Solr}.

\textit{Solr} and \textit{Elasticsearch} supported much of the same functionality, but there were some important distinctions. From one side \textit{Solr} has support of deduplication [28], approximate hash based matching, keyword suggestions, and search results clustering [18]. On the other hand, \textit{Elasticsearch} has support for capabilities such as phonetic search. All of these functions are important for digital forensic search, but \textit{Solr} has more unique capabilities that would assist search in large-scale datasets.

The benchmarking experiments show that \textit{Elasticsearch} index creation time was faster than \textit{Solr} for 11 out of 12 trials of the indexer. The one exception was the first run of the smallest dataset. Furthermore, in \textit{Elasticsearch} the resulting index size is reduced from the original dataset by around 99%, while we see an increase in index size in \textit{Solr} ranging from a few percentage to up
Our experiments indicate that *Elasticsearch* is favorable over *Solr* regarding both index size and index creation time.

Elasticsearch was better than *Solr* at 3 out of 4 search test categories for the first run, but *Solr* was performed better than *Elasticsearch* for the second run. There was also the same number of clear cut misses for both search engines. The second run should be more like a real operating environment with a warm cache. With respect to memory consumption, there was a big difference between *Elasticsearch* and *Solr* usage of Virtual memory. *Elasticsearch* uses around 13 more GiB on Virtual memory than *Solr*.

Future work can improve our results in the following ways. A comparison on specific search algorithms should be performed on the specific indexing and search methods used by *Elasticsearch* and *Solr*. What would greatly assist our results are performing our experiments in a multi-virtual machine environment and spread the databases, shards and servers amongst the hosts. This environment would be suitable for testing how well the search engines perform at distributed search. The experiments could also test different import methods, importing using multiple threads and using different bulk sizes to test which approach minimizes index creation time.

References

