
Evaluating Publish/Subscribe Protocols for use in
Constrained Networks

Emil Paulin Andersen and Frank T. Johnsen

Norwegian Defence Research Establishment (FFI)
Instituttveien 20, Kjeller, Norway

Abstract. Considering the case of disaster relief and search and rescue
operations, we can anticipate personnel operating with a total or partial
lack of any pre-existing infrastructure. This means that ad hoc com-
munication solutions must be established. Coupled with the abundant
sensing capabilities provided through the innovation behind the Internet
of Things (IoT), we need to identify suitable publish/subscribe protocols
that can convey such data when facing various constrained networking
conditions.
In this paper, we evaluate MQTT, MQTT for Sensor Networks (MQTT-
SN), and ZeroMQ in several different relevant networking conditions.
Based on the analysis of each protocol, we have concluded that they are
suitable for use in less constrained networks but struggle with efficient
communication in the more challenging ones. We found that MQTT
shows good performance in the less limiting networks we have tested,
only surpassed by MQTT-SN in some cases. However, due to tooling
maturity and unsurpassed community support, we consider MQTT the
"overall winner".

Keywords: Publish/Subscribe · Edge Computing · IoT

1 Introduction

Gartner defines the Internet of Things (IoT) as "a network of physical objects
that contain embedded technology to communicate and sense or interact with
their internal states or the external environment" [1]. IoT has become an essen-
tial aspect of daily life, helping us automatically manage simple and complex
tasks without much hassle. The quantity of data produced by these devices is
increasing, and it is not always efficient nor possible to process this data on the
system locally. Therefore, there has become a need to move the data responsi-
bility to other systems with more computing power and better data processing.
The data should be sent from one system to another in an efficient and fault-
tolerant manner. This message exchange must happen across a network, which
might not always be reliable. Operating in a controlled environment, for exam-
ple a factory, communication resources are predictable. Conversely, out in an
operation, performing search and rescue in distant areas, or providing disaster
relief to an area affected by a natural disaster, communication is a different mat-
ter. In such operations, it is often a need for collaboration between military and



2 E.P. Andersen and F.T. Johnsen

civilian entities, and communication equipment is often provided in an ad hoc
manner. There is here a requirement for edge computing, where, "Edge comput-
ing is part of a distributed computing topology where information processing
is located close to the edge, where things and people produce or consume that
information.", according to Gartner [2]. In this paper, we have looked at several
protocols within the publish/subscribe pattern [3] and evaluated how they per-
formed in constrained networks. The protocols include MQTT [4], MQTT for
Sensor Networks (MQTT-SN) [5] and ZeroMQ [6].

This paper is a summary of work that started in the autumn of 2021 with a
preparatory project [7], and that concluded with a master’s thesis delivered the
summer of 2022 [8].

The paper is organized as follows: Section 2 presents related work. Section 3
presents the experiment design. Results are presented, analyzed and summarized
in Section 4. Section 5 concludes the paper.

2 Related Work

In NATO, several Research Task Groups (RTGs) have investigated different
technological aspects of search and rescue operations. An RTG titled "Military
Applications of IoT" investigated incorporating IoT data into military systems,
leveraging the MQTT protocol. The group culminated with a technical demon-
stration of the feasibility of such an approach [9].

MQTT has been identified as a promising publish/subscribe protocol for
use in disaster relief, among other things in a prototype tested by the German
Red Cross [10]. Further, various publish/subscribe protocols, including MQTT,
have been tested in constrained military networks for command and control sys-
tems by a RTG [11]. This research shows that MQTT and MQTT-SN are fairly
lightweight, and preferable to other industry standards like Advanced Message
Queuing Protocol (AMQP) for use in constrained networks.

ZeroMQ also finds itself to be one of the more promising protocols for use in
constrained networks [12]. It has also been evaluated by an RTG on group com-
munication in military networks, where it achieved good results [13]. Both these
studies show ZeroMQ outperforming industry standards like Data Distribution
Service (DDS) and AMQP.

For this reason, we further investigate the MQTT, MQTT-SN and ZeroMQ
protocols to determine their usability for use in constrained networks. In this
paper, our findings support the findings of these studies, from which the overall
conclusion is that UDP gives lower latency in general (almost the same as MQTT
with Quality of Service (QoS) level 0).

3 Experiment Design

As part of the experiment, we needed to establish and emulate relevant net-
working technologies. We also needed a testbed to provide an environment for
controlled, repeatable experiments and analysis.



Evaluating Publish/Subscribe Protocols for use in Constrained Networks 3

3.1 Networks

In order to emulate networks with varying degrees of constraints, we have de-
signed several network models that emulate realistic networks that could be used
in search and rescue or disaster relief operations.

The network models can be seen in table 1. We have a model to emulate low-
band 5G networks, which we expect to play a prominent role in future operations,
with the use of mobile base stations and edge computing.

Another class of networks, more constrained than 5G, but very relevant to
establishing ad hoc communication capacity is military networks. Tactical Broad-
band radios are designed to be used in challenging outdoor environments, i.e.,
the tactical battlefield [14].

Satellite communication (SATCOM) may provide super high frequency (SHF)
and ultra-high frequency (UHF) communications access. SHF is used for static
and deployed stations on the ground, while UHF is used for tactical communi-
cations [15]. We have focused on testing with a SATCOM model similar to what
is provided by UHF, due to the nature of operations we consider.

NATO Narrowband Waveform is a standard developed by NATO to provide
a single-channel ad hoc network that will serve voice and data traffic [16].

Combat Network Radio (CNR) operates in a network that provides both a
half-duplex circuit and either a single radio frequency or a set number of radio
frequencies [17].

Table 1. Network models

Network Data rate Latency Loss
percentage

Low-band 5G 100 mbit/s 20 ms 0%
Tactical Broadband 2 mbit/s 100 ms 1%
SATCOM 250 kbit/s 550 ms 0%
NATO Narrowband
Waveform 16 kbit/s 500 ms 0%

CNR 9.6 kbit/s 100 ms 1% / 10%

3.2 Testbed

In order to test the performance of the protocols in constrained networks, we have
developed an analysis tool running in Python (version 3.8.10). The tool is built
using the packet capture library tcpdump [18]. Tcpdump saves packet informa-
tion in a PCAP file [19], which can later be analyzed in the network analysis tool,
Wireshark [20]. We implemented support for the networks presented in the pre-
vious section, namely 5G, Tactical Broadband, SATCOM, NATO Narrowband,
and CNR. This was done using the netem tool [21] as part of our framework.
Netem provides functionality that can emulate network properties like band-
width, packet loss, delay, duplication and re-ordering. The tool is enabled in the



4 E.P. Andersen and F.T. Johnsen

Linux kernel and is controlled by a command line tool. In our experimentation
we used it to simulate challenging network conditions by limiting bandwidth,
increasing delay and increasing the percentage chance of packet loss occurring.
We opted for netem because it has been shown to be empirically and statistically
correct [22]. Further we implemented support for testing MQTT, MQTT-SN and
ZeroMQ across these networks.

We have used the Pandas library in Python (version 1.4.0) [23] to store logs
and create statistics during each test run.

We did consider building on existing testbeds, and investigated several op-
tions. These testbeds, and the rationale behind why we opted to develop our
own testbed is further described in the thesis [8].

3.3 Execution

Fig. 1. The test setup used by all protocols

The tests that we ran during our experimentation were conducted with a similar
base setup as can be seen in figure 1. To run the setup, we used a Linux machine
running Ubuntu (version 20.04.3 LTS), where we configured and ran the tests
using our analysis tool. On the machine, we set up a virtual machine (also
running on Ubuntu), which worked as a server that the clients connected to



Evaluating Publish/Subscribe Protocols for use in Constrained Networks 5

when starting a test. The server has a broker, which is needed in the case of
MQTT, and a gateway used by MQTT-SN. The broker filters and forwards
messages from the publisher to the subscriber, while a gateway converts MQTT-
SN messages from the publishers to MQTT messages that can be accepted by
the broker. While testing with MQTT, we used 27 publisher clients and 27
subscriber clients. MQTT has a QoS setting, which enables a range of guarantees
for message delivery. This is on top of the guarantees provided by TCP which
MQTT uses, and ranges from 0 (fire and forget), 1 (at least once), and 2 (only
once).

The data we have chosen to use for these tests, include GPS and image data.
These data types are highly relevant to the use cases we have considered, namely
disaster relief and search and rescue operations. GPS provides vital information
about not only the position of search crews and personnel, but possibly also the
victims in need of assistance. Images may provide additional information vital
to an operation by providing an overview of an area, or a visual representation
of an asset.

Some limitations were put on our testing of the MQTT-SN protocol since the
implementation we had to use for the clients was not optimal. The limitations
include issues sending data with larger payloads and using QoS 2. Therefore,
we only ran tests with MQTT-SN using QoS 0 and 1, only with smaller data
sizes and we only used 18 clients of each type. We decided to test the protocol
using two different test variations. The standard test variation is MQTT-SN to
MQTT-SN, meaning that the publishers produce MQTT-SN messages, and the
subscribers are configured to receive MQTT-SN messages. The other variation
is a hybrid one, more commonly seen in other implementations. The hybrid
variation has publishers sending MQTT-SN messages to the gateway, which then
forwards them to the broker as MQTT messages. The subscribing clients are
standard MQTT clients that receive MQTT messages form the broker. Unlike
MQTT, MQTT-SN uses UDP for message transport.

In our experimentation with ZeroMQ, we opted to test it with two different
transport protocols, namely TCP and Pragmatic General Multicast (PGM).
PGM is a protocol for reliable multicast transport of data over IP networks.
ZeroMQ has a socket API [24], where the sockets used are dependent on the
implementation. The setup used for ZeroMQ is similar to MQTT with 27 clients
of each type, which exchange messages over a broker located on the virtual
machine. Clients in ZeroMQ need to be implemented using sockets from the
socket API. We have implemented clients for both TCP and PGM using sockets
from the publish/subscribe pattern and using an architecture similar to what
is provided as an example by the ZeroMQ developers. Since ZeroMQ does not
have a predefined broker component, we implemented our own with a filtering
mechanism comparable to what was used by MQTT. ZeroMQ does not have
the QoS setting found in MQTT and MQTT-SN and only relies on the delivery
semantics used by the sockets.

Of the protocols we have tested in this study, MQTT is the most mature tech-
nology, with well-supported tools, good documentation, and a large community.



6 E.P. Andersen and F.T. Johnsen

ZeroMQ has good tools and is quite mature, but the community is somewhat
small compared to that of MQTT. Implementing certain solutions with ZeroMQ
can provide a challenge due to lacking documentation and support. MQTT-SN is
the least mature of the protocols, with poor tooling and a very small community
as of today.

4 Results

Using the analysis tool we developed, we tested the MQTT, MQTT-SN, and
ZeroMQ protocols using different network models. We aimed to provide recom-
mendations on which protocol(s) to use for the different networks we tested. To
compare the protocols, we the evaluate average transmit delay and packet loss.
We have tested with GPS data, which is useful for providing information about
the location of people or vehicles. We have also tested with image data, which
provides additional situational information. The results presented here are from
tests with the 5G and SATCOM network models, commonly used in the civil-
ian sector, and CNR, which is on the lower limit of what is used in military
operations. The complete results can be found in the thesis [8].

4.1 5G

Fig. 2. Average transmit delay times using the 5G network model with GPS data

Figure 2 shows how the protocols performed regarding average transmit delay
during the tests with the 5G network model using GPS data. Note that both
tests with ZeroMQ are positioned in the QoS 0 category. This is because ZeroMQ
does not have any inherent QoS settings and only relies on the delivery semantics
provided by the socket type used. This will be the same for all the coming figures.
Table 2 shows the packet loss for each protocol. Most of the protocols had low



Evaluating Publish/Subscribe Protocols for use in Constrained Networks 7

delays, at around 100 milliseconds per message. The protocol that stands out
most is MQTT-SN with the hybrid variation, which is significantly quicker than
the others. This was likely due to UDP, which has much less overhead than TCP.
The standard variation is in line with the other protocol, so there might be some
delay introduced by the clients used since this variation uses both MQTT-SN
clients for publishing and subscribing. Looking at the QoS levels for MQTT and
MQTT-SN, we see that the higher QoS levels had no significant impact on the
average delay of the protocols, which is to be expected in this type of network.

Table 2. Packet loss from tests with the 5G network model using GPS data

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard 0 0%
1 0%

MQTT-SN Hybrid 0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

Fig. 3. Average transmit delay times using the 5G network model with image data

Figure 3 shows how the protocols performed regarding average transmit delay
during the tests with the 5G network model using image data. Note that since
we did not perform tests with MQTT-SN using image data, the figure shows no
results for this protocol. Table 3 shows the packet loss for each protocol. Here we
see that the MQTT protocol had marginally higher delays than the tests with
GPS data, which is expected due to the increase in message size. The ZeroMQ



8 E.P. Andersen and F.T. Johnsen

protocol showed a large increase in delay times for the TCP and PGM tests.
The increased message size seems to have a greater effect while sending with
these protocols than with MQTT, especially for PGM. The network statistics
show that the number of packets created by multicasting is high, which may
have affected performance somewhat.

Table 3. Packet loss from tests with the 5G network model using image data

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard 0 NA
1 NA

MQTT-SN Hybrid 0 NA
1 NA

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

4.2 SATCOM

Fig. 4. Average transmit delay times using the SATCOM network model with GPS
data

Figure 4 shows how the protocols performed in regards to average transmit delay
during the tests with the SATCOM network model using GPS data. Table 4
shows the packet loss for each protocol. As with the previous network models, we
can see that the average delay is similar across the protocols. The only exception
is MQTT with QoS 2, which has a delay of almost two seconds. This is again
because QoS 2 introduces quite a bit of overhead in the form of handshakes



Evaluating Publish/Subscribe Protocols for use in Constrained Networks 9

and acknowledgments compared to QoS 0 and 1. The average delay is somewhat
higher than the previous network models, but this was expected as the SATCOM
network model introduces a delay of 550 milliseconds.

Table 4. Packet loss from tests with the SATCOM network model using GPS data

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard 0 0%
1 0%

MQTT-SN Hybrid 0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

Fig. 5. Average transmit delay times using the SATCOM network model with image
data

Figure 5 shows how the protocols performed in regards to average transmit
delay during the tests with the SATCOM network model using image data. Table
5 shows the packet loss for each protocol. The results follow a similar pattern
to the other tests with image data in that the ZeroMQ using the PGM protocol
is slower than MQTT. The main difference we see here is that ZeroMQ with
TCP has a lower transmit delay than MQTT, even with QoS 0. In the previous
comparison with Tactical Broadband, we saw that ZeroMQ had a much higher
delay than MQTT. PGM also had a significant packet loss, which we have not
experienced while testing any other protocol using SATCOM. There was also
some packet loss from the Tactical Broadband test, but this was very little and



10 E.P. Andersen and F.T. Johnsen

may be due to connection issues at startup. The packet loss for SATCOM is
much higher at over 12%, which cannot be attributed to startup issues. The
results also show that the delay has increased more for MQTT than for the tests
using GPS data. This was especially the case with QoS 2. We know from the
results on the network layer that the data rate decreased significantly in the test
using this network model compared to the other models.

Table 5. Packet loss from tests with the SATCOM network model using image data

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard 0 0%
1 0%

MQTT-SN Hybrid 0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 12.77%

4.3 CNR with 10% Loss

Fig. 6. Average transmit delay times using the CNR network model with 10% loss with
GPS data

Figure 6 shows how the protocols performed in regards to average transmit delay
during the tests with the CNR network model with 10% loss using GPS data.
Table 6 shows the packet loss for each protocol. This is the most constrained
network that we have tested, and again we see that most of the protocols have



Evaluating Publish/Subscribe Protocols for use in Constrained Networks 11

high delays and cannot deliver messages efficiently regarding speed. The excep-
tion is MQTT-SN using the hybrid test variation, which shows low delays. The
standard variation of the MQTT-SN test did not manage to receive any mes-
sages and therefore performed worse than the hybrid variation. This is the only
test showing a significant decrease in data rate while using MQTT-SN, which
shows that this protocol struggles somewhat in transmitting messages.

Table 6. Packet loss from tests with the CNR network model with 10% loss using GPS
data

Protocol QoS Packet Loss

MQTT
0 8.55%
1 19.37%
2 61.78%

MQTT-SN Standard 0 100%
1 100%

MQTT-SN Hybrid 0 20.21%
1 25%

ZeroMQ TCP None 8.35%
ZeroMQ PGM None 60.96%

Fig. 7. Average transmit delay times using the CNR network model with 10% loss with
image data

Figure 7 shows how the protocols performed in regards to average transmit
delay during the tests with the CNR network model with 1% loss using image
data. Table 7 shows the packet loss for each protocol. We see similar results here
where no protocols could transmit messages efficiently. This shows that these
networks are challenging, even if the protocols are developed for use in limited
networks with poor bandwidth.



12 E.P. Andersen and F.T. Johnsen

Table 7. Packet loss from tests with the CNR network model with 10% loss using
image data

Protocol QoS Packet Loss

MQTT
0 94.29%
1 91.51%
2 100%

MQTT-SN Standard 0 NA
1 NA

MQTT-SN Hybrid 0 NA
1 NA

ZeroMQ TCP None 97.30%
ZeroMQ PGM None 93.28%

4.4 Discussion

MQTT shows good performance in the less limiting networks we have tested.
The protocol shows no issues in transmitting messages, both in regard to delay
and packet loss. Using QoS 2 showed that the amount of overhead caused is-
sues for the protocol, primarily due to the extra steps needed before a message
transmission was completed. Due to this, we only recommend using QoS 0 and
1, as the overhead is mostly reduced with these settings. The tests with more
limiting networks show that the protocol struggled and is therefore not found
suitable for use. The protocol was the easiest to set up and use compared to the
other protocols, and this is to be expected, as MQTT is an industry-standard
protocol in IoT.

Our results show that MQTT-SN had good results for almost all tests. The
delay was low with both test variations across all network models, and the proto-
col outperformed the other ones in most tests. The packet loss was also compar-
atively low. Both QoS 0 and 1 showed good results, but QoS 0 was most times
faster than QoS 1. The only issues were found during the test using the CNR
network model with a 10% loss. Here, only the hybrid test variation could send
and receive messages. Even though the network is quite limited, it showed good
results, both in terms of delay and packet loss. Still, the packet loss was too high
for us to be able to recommend its usage in such a network. While overall results
are good, the implementation limitations have restricted us from adequately be-
ing able to compare it to the other protocols. Setting up the protocol was not
an easy task and was significantly more difficult than the other two protocols we
have investigated, except for ZeroMQ with PGM.

ZeroMQ showed the overall poorest results from the protocols we have tested.
TCP had some promise with smaller message sizes, where the results were com-
parable to that of MQTT and MQTT-SN. However, the test with larger message
sizes showed that the protocol had issues, both in terms of delay and packet loss.
PGM provided the overall worst results, especially with larger message sizes. The
poor results might be due to the test implementation, which is difficult to say
without more testing. The results may have been better without a broker, but



Evaluating Publish/Subscribe Protocols for use in Constrained Networks 13

the downside is the increased complexity of setting up and connecting the clients.
Setting up the protocol with clients was relatively simple, but there were cer-
tain networking issues with getting PGM to work, as it is not well supported in
ZeroMQ.

5 Conclusion

In this paper, we have evaluated three publish/subscribe protocols for use in
constrained networks. The networks encompass both civilian and military com-
munication solutions that are relevant to search and rescue operations. Using
network emulation, we have evaluated the protocols when conveying position
information (representative of tracking the units involved in an operation) as
well as images (in support of a shared awareness between units).

We found that MQTT shows good performance in the less limiting networks
we have tested. We recommend using MQTT with QoS levels 0 (fire and forget
messages) and 1 (at least once semantics). Due to good tooling support, MQTT
is easy to use.

Using a higher QoS level would usually be preferable in operations where the
requirement for guaranteed delivery is higher than the need for speedy delivery,
such as search and rescue operations. Our results show that in most networks
QoS 2 provides neither. In less constrained networks, there is no packet loss
and thus no need for anything higher than QoS 1, while in more constrained
networks, setting the QoS higher only induces additional network congestion.

MQTT-SN, while providing the overall best performance, we found that the
tooling support was lacking, and the protocol is not straightforward to use in
this respect. So, while performance is good, implementation maturity is poor.

ZeroMQ exhibited the overall poorest performance for the networks we tested.
So, from a pure performance perspective we can recommend using MQTT-

SN. Conversely, for the best community and tooling support, MQTT is the
overall winner.

References

1. Gartner, “Internet of things (iot),” https://www.gartner.com/en/
information-technology/glossary/internet-of-things, accessed on 2022.06.08.

2. ——, “IT Glossary — Edge Computing,” https://www.gartner.com/en/
information-technology/glossary/edge-computing, accessed on 2022.09.05.

3. Matthew O’Riordan, “Everything You Need To Know About Publish/Subscribe,”
https://ably.com/topic/pub-sub, accessed on 2022.09.05.

4. OASIS, “MQTT Version 3.1.1,” http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
mqtt-v3.1.1-os.html#_Toc398718018, accessed on 2022.09.05.

5. ——, “MQTT For Sensor Networks (MQTT-SN) Protocol Specification Version
1.2,” https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_
spec_v1.2.pdf, accessed on 2022.09.05.

6. The ZeroMQ authors, “ZeroMQ An open-source universal messaging library,”
https://zeromq.org/, accessed on 2022.09.05.



14 E.P. Andersen and F.T. Johnsen

7. Emil P. Andersen, “Creating an analysis tool for testing and evaluating the
mqtt protocol,” https://github.com/EPA1/Preparatory-Project/, accessed on
2022.10.28.

8. ——, “Evaluating publish/subscribe protocols for use in constrained networks,”
https://hdl.handle.net/11250/3006200, accessed on 2022.09.01.

9. F. T. Johnsen, Z. Zieliński, K. Wrona, N. Suri, C. Fuchs, M. Pradhan, J. Furtak,
B. Vasilache, V. Pellegrini, M. Dyk et al., “Application of iot in military operations
in a smart city,” in 2018 International Conference on Military Communications and
Information Systems (ICMCIS). IEEE, 2018, pp. 1–8.

10. M. Pradhan, “Interoperability for disaster relief operations in smart city environ-
ments,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019,
pp. 711–714.

11. M. Manso, N. Jansen, K. Chan, A. Toth, T. H. Bloebaum, and F. T. Johnsen,
“Mobile Tactical Force Situational Awareness: Evaluation of Message Broker Mid-
dleware for Information Exchange,” ICCRTS 2018.

12. Z. Kang and A. Dubey, “Evaluating DDS, MQTT, and ZeroMQ Under Different
IoT Traffic Conditions,” 2020. [Online]. Available: http://www.dre.vanderbilt.
edu/~gokhale/WWW/papers/M4IoT2020

13. N. Suri, M. Breedy, R. Fronteddu, A. Morelli, E. Cramer, J. Nilsson, A. Hansson,
K. Marcus, and A. Martens, “Evaluating the scalability of group communication
protocols over synchronized cooperative broadcast,” in 2021 International Confer-
ence on Military Communication and Information Systems (ICMCIS), 2021, pp.
1–9.

14. ASELSAN, “GRC-5220 Tactical Broadband ETHER-
NET Radio,” https://www.aselsan.com.tr/en/capabilities/
military-communication-systems/military-broadband-multimode-radiolinks/
grc5220-tactical-broadband-ethernet-radio, accessed on 2022.09.05.

15. NATO, “SATCOM Post-2000 (Archived),” https://www.nato.int/cps/en/natohq/
topics_50092.htm, accessed on 2022.09.05.

16. T. J. Berg, “NATO Narrowband Waveform (NBWF) - multilevel-level precedence
and preemption for IP traffic,” https://ffi-publikasjoner.archive.knowledgearc.net/
handle/20.500.12242/953, accessed on 2022.09.05.

17. military-history.fandom, “Combat-net radio,” https://military-history.fandom.
com/wiki/Combat-net_radio, accessed on 2022.09.05.

18. The Tcpdump Group, “tcpdump and libcap,” https://tcpdump.org/, accessed on
2022.09.05.

19. G. Harris and Ed. and M. Richardson Sandelman, “Pcap capture file format,” https:
//tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html, accessed on 2022.06.08.

20. Wireshark Foundation, “About Wireshark,” https://www.wireshark.org/, accessed
on 2022.09.05.

21. Linux Foundation, “netem,” https://wiki.linuxfoundation.org/networking/netem,
accessed on 2022.06.08.

22. A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen, and A. I. Wang, “An empirical
study of netem network emulation functionalities,” in 2011 Proceedings of 20th
International Conference on Computer Communications and Networks (ICCCN),
2011, pp. 1–6.

23. NumFOCUS, “pandas,” https://pandas.pydata.org/, accessed on 2022.09.05.
24. The ZeroMQ authors, “Socket api,” https://zeromq.org/socket-api/, accessed on

2022.09.12.


